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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1985, VOL. 4, No. 1, 1-18 

The minimum metallic conductivity 

by N. F. MOTT 
Cavendish Laboratory, Madingley Road, 

Cambridge CB3 OHE, England 

Both experiment and theory show that the conductivity of a degenerate electron 
gas in a 'dirty metal' tends continuously to zero in the limit of low temperatures, as 
the Fermi energy approaches a mobility edge. A derivation is given in terms of the 
Kubo-Greenwood formula. This is not the case when the metal-insulator transition 
is induced by a magnetic field, and then a minimum metallic conductivity omin can 
be observed. Doped crystalline semiconductors and amorphous and liquid 
semiconductors are discussed in this context. A brief account is given of two- 
dimensional systems. 

1. Introduction 
The concept of a minimum metallic conductivity was introduced by the present 

author more than a decade ago (Mott 1972), though the concept is inherent in papers 
published earlier (Mott 1967). It deals with the conductivity of systems, such as 
amorphous metals, in which the mean free path of an electron is short. The concept 
stated that, if the conductivity is metallic, that is if it tends to a finite value as T-0, it 
cannot be less than a certain value omin. omin is given by the equation 

bmin = 0.03 e2/ha (1) 

the constant is approximate, and a in an amorphous metal would be the distance 
between atoms, so that om,-250fi2-'cm-'; in the impurity band of a doped 
semiconductor a i s  the distance between donors, and omin probably lies between 10 
and 1 W1 cm-l. 

In spite of a great deal of evidence that this prediction was correct (Mott et al. 1975, 
Mott and Davis 1979), we now know that it is not. Abrahams et al. (1979) used a scaling 
theory to show that the conductivity of a 'metal' at zero temperature would tend to zero 
continuously as the Fermi energy approached the mobility edge-that is the energy at 
which electron states there become localized in the sense first described by Anderson 
(1958). Experimental evidence that this was so was rapidly forthcoming from the 
extensive investigations of Thomas and co-workers on crystalline silicon doped with 
phosphorus (Rosenbaum et al. 1980. Paalanen et al. 1982, Thomas 1983). These authors 
used temperatures down to 2mK, and claimed that older work which showed the 
existence of omin gave this impression because the temperatures used, above 1 K, were 
not low enough. A continuous drop to zero was later observed in several other systems, 
for instance amorphous Si: Nb (Hertel et al. 1983) where o goes continuously to zero as 
the concentration of Nb is decreased. 

A review of the position a year ago was given in this journal by Edwards and Sienko 
(1983). This article first outlines the arguments for a minimum metallic conductivity 
and than shows why they were wrong. It also discusses why the concept remains useful. 
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3 N .  F .  Mot t  

One reason is that, if the conductivity of an amorphous semiconductor is written 

0 = no exp { - ( E ,  - E,) /kT)  (2) 
cr, may in certain cases approximate to omin. Here E ,  is the mobility edge and E ,  the 
Fermi energy. This is so, particularly, in liquid semiconductors which undergo a metal- 
insulator transition. Also in doped semiconductors where a metal-insulator transition 
is caused by the influence of a magnetic field, a minimum metallic conductivity given by 
(1) is observed. This can now be understood theoretically (Mott 1984a, b), as we shall 
see. 

2. The model of Anderson (1958) 
In his paper which introduced the concept of localization, Anderson (1958) 

considered an electron moving with the three-dimensional potential energy illustrated 
in figure 1. A Kronig-Penney array of potential wells was envisaged, ieading through 
the tight binding approximation to the band width B given by 

B = 221 

where z is the coordination number and I the transfer integral 

I =  I ) ~ H $ ~ ~ ~ X  

I)1, q2 being wave functions on adjacent sites. In this situation the wave functions are of 
the form 

s 
Y =c n exp (ika,)$(r - a,) 

where a, are the lattice sites. Anderson then introduced random depths for the wells, 
spread over a range V,. This will introduce scattering, leading to a finite mean free path 

( b l  
N ( E l  

Figure 1. Potential energy function used by Anderson (1958). (a) Without random potential. 
(b) With random potential. The density of states is also shown. 
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The minimum metallic conductivity 3 

1. When I/,= B, use of elementary quantum mechanics shows that 12: a, the distance 
between the wclls. Thc wave functions should thus be of the form (with $,,=$(r-an)) 

where the 4, are random phases and the c, real numbers. According to a principle 
introduced by Ioffe and Regel (1960), 1 =a is the smallest mean free path possible; it is in 
fact clear that the wave function cannot lose phase memory more quickly than it does 
according to equation (3). 

It is interesting to ask what the conductivity would be if a band of this kind is half 
filled with a degenerate electron gas, that is with one electron per atom, in a model 
where the Coulomb repulsion between electrons is neglected. The conductivity of a 
metal can be written 

0 = ne2T/m 

where n is the number of electrons per unit volume, 1 /a3 in our case, and t is the time of 
relaxation for electrons with the Fermi energy given by t = l / ~ ~ ;  vF is the velocity of such 
an electron. We write uF = hkF/m,  where k ,  is the wave number and find, with 1 =a 

c =  ~ (k,a) 
ha e2 I 

k ,  is given by 

4nk;  1 
- ( 2 4 3  

3 2a3 

whence kFa = (371’) N 3.1. So approximately 

G = e2/3ha (4) 
If a is a few Angstroms, this Ioffe-Regel conductivity is of order 3000 Q- cm- ’, 

though its deduction from the assumption of one electron per atom and a spherical 
Fermi surface means that in real materials it can be somewhat larger. It looks at first 
sight as if the conductivity cannot be smaller, and in some systems this seems to be so. 
Thus in amorphous metals for which the resistivity approaches this value, the 
temperature coefficient of resistivity is very small, and according to a rule first given by 
Mooij (1973) it will be negative if the resistivity is greater than 170pQcm 
(o-6000Q-1cm-1). The reason for the negative value is discussed in tj7; but a 
saturation at a value in the range 3-6000s2-1 cm-’ is a well established fact. 

However, in the model of Anderson, the conductivity will continue to decrease as V, 
increases beyond the value B, although the mean free path cannot get any shorter. The 
reason is that the density of states will decrease by a factor g defined in the model by 

= N ( E F ) / N ( E F ) V o  = 0 

This does not occur in liquid metals. For VO>B, N ( E , ) -  l / a 3 ( B 2 +  V;)”’. The 
conductivity will then be 

The reason why g2  occurs is clear if we calculate the conductivity from the Kubo- 
Greenwood formula. This amounts to calculating a(o), the a.c. conductivity at 
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4 N .  F .  .blot[ 

frequency o, and letting o then to zero. o(w) is equivalent to the optical absorption 
coefficient, and will be proportional to 

where El  and Y ,  are energies and wave functions for electrons below the Fermi 
limiting energy and E,, Y ,  above. The 'av' means an average over all pairs of occupied 
and empty states separated by an energy ho. Letting o tend to zero, this becomes 

where the average is over all states 'PI, 'P, at the Fermi surface. This is where the term 
y2 comes from in equation (7).  

There is some evidence for the reality of the term g2, mainly from the conductivities 
of liquid semimetals for which the conductivity falls below the Ioffe-Regel value. 
There the drop of the density of states may be due to two overlapping bands as in 
figure 2. Thus in Te,-,T1,+, a plot of the Pauli paramagnetism (which should be 
proportional to g) against a''' gives a straight line (Cutler 1977). For liquid tellurium 
the conductivity in W'  cm-l varies between 1300 at 675 K and 2750 at 1100 K, and 
the plot of all2 against the Knight shift gives a straight line. Similar results are obtained 
for metal-ammonia solutions (Acrivos and Mott 197 1). 

Anderson's paper of 1958 predicted that at a certain value of V,/B the states 
throughout the band would become localized. By this is meant that the wave functions 
have the form 

exp ( - 4 5 )  Re ( Y e x J  (7) 
where Ye,, is given by (3); and the real part must be taken since Y for a non-degenerate 
localized state must be real. So, if we think of a degenerate gas, than as for the extended 
(non-localized) case, at zero temperature states areoccupied up to a limiting energy EF, 
but are all localized; at zero temperature the 'gas'-or as Anderson called it, the Fermi 
glass, cannot carry a current. 

The value of Vo/B for which localization will occur throughout the band depends on 
co-ordination number (z), but for z = 6 it is about 2 or rather less?. For this value, the 

Figure 2. Showing two overlapping bands, pinning the Fermi energy E,. States could be 
localized between E,  and E,. 

?About 1.6 according to EIyutin et al. (1984). 
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factor g in the middle of the band is estimated to be about 4. Thus according to (5) the 
minimum metallic conductivity should be of order 

0.03e2/ha (8) 
If Vo/B is less than the critical value, it was first pointed out by the present author 

that states should none the less be localized up to a critical energy E,, known as the 
mobility edge, as shown in figure 3. For an energy E ,  above E,, wave functions are 
extended, that is of form (3); for energies E ,  below E ,  (as shown in figure 3), they are of 
the form (7). As E,  - E tends to zero it is believed that (, the localization length, tends to 
infinity, as 

1 I t  4 E ,  - E)” (9) 

There is an extensive literature on the value of s, but for a theory in which interaction 
between is neglected s =  1 seems to us probable, though numerical work indicates 
slightly larger values. 

For a degenerate electron gas, if the Fermi energy lies at E,, the ‘minimum metallic 
conductivity’ should be modified to (Mott 1981) 

omin = 0.03e2/ha, (10) 
where 

( U / U t ) - ‘  = “E,),”(E),, 

an equation which would give sensibly the same as (8) unless E ,  lies very near the band 
edge. The ‘av’ means an average over the whole band. 

Figure 3. Density of states in a narrow band of a Fcrmi glass with the Fermi energy shown 
and localized states shaded. 

3. The experimental situation 
Although we now believe that the predictions of (8) and (10) are not in general 

correct, we next discuss the evidence in their favour. The experimental situation closest 
to the Anderson model is that of a doped and compensated n-type semiconductor. The 
donors represent the wells of figure 1; they have random depths because of the field of 
the charged acceptors. They are at random positions in space which introduces 
additional disorder, the effects of which are discussed in the literature (Debney 1977). 
An impurity band is formed, as in figure 1. The theory as presented up till now neglects 
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6 N .  F .  Mott 

the Coulomb interaction between electrons. But if the band is half full, this will have a 
major effect; the Hubbard U ,  defined as the intra-atomic Coulomb interaction, and 
given by 

U = (e2/k-rl 2 )  (1 1) 

where K is the dielectric constant, can split the impurity band in two, the upper and 
lower Hubbard bands, or as they were called prior to Hubbard's work, the Do and D- 
bands. In such a case the impurities form an antiferromagnetic insulator up to a certain 
concentration (no). As n increases, the Hubbard bands broaden and when they overlap 
each other a discontinuous metal-insulator transition (the Mott transition) is 
predicted, at a concentration 

I?:,  .1u,, 10.26  (12) 

where aH is the hydrogen radius. We shall return to the Mott transition in $8. 
For compensated samples, on the other hand, if the compensation K (= N,/N,)  is 

considerable, the Hubbard U should not play any major role. An approximation of 
non-interacting electrons is then a good starting point, though long-range Coulomb 
interactions can also play an important part (cf. $7) .  

The kind of evidence that, until the 1980s, supported the concept of a minimum 
metallic conductivity is illustrated schematically in figure 4. This shows the resistivity of 
a doped semiconductor plotted logarithmically against 1/T; the different curves are for 
either a decreasing concentration of donors, or varying uniaxial stress, or increasing 
magnetic field, which is thought to shrink the orbits and so decrease B, the width of the 
impurity band. cmin was introduced as both the smallest unactivated conductivity and 
the pre-exponential in (2); they are easily seen to be identical, since both should be given 
by eN(E,)  kT,u,, where p, (= eD/kT)  is the mobility for a carrier with energy E,. D is here 
the diffusion coefficient at  E;  

1" P 

/, . re- - - .  / -  

-r u= u min 

t--- 

Figure 4. Resistivity of a non-crystalline metal as a function of 1/T, when a metal-insulator 
transition is induced by change of composition, stress or magnetic field. In cases where no 
minimum metallic conductivity exists the behaviour should be as shown by the dotted line. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



The minimum metallic conductiuitv 7 

At low temperatures, conduction will be by hopping from one centre to another; the 
relationship 

g = A exp (- B/T’I4)  (13) 

is deduced from a theory of non-interacting electrons and often observed, though 
important modifications are introduced when long-range Coulomb interactions are 
taken into account (Efros and Shklovskii 1975, Davies et al. 1982,1984) which have not 
with certainty been observed. This article will not review the problem of hopping 
conduction. 

Perhaps the most impressive example of this kind is the work of Biskupski (1982) 
and co-workers (Biskupski et al. 1981) on n-type compensated InP where the transition 
was induced by a magnetic field. These results are shown in figure 5. Since two 
variables, field and donor concentration, are involved, it was possible to plot gmin 

against a; the results are shown in figure 6, giving excellent agreement with (8). The 
original work used temperatures only down to 1.3 K, but both Biskupski et al. (1984) 
and Long and Pepper (1984) have extended it down to 40mK; the experiments show 
clearly that for this system omin does exist. 

On the other hand the classic experiments of Thomas and co-workers on Si: P 
(Rosenbaum et al. 1980, Thomas 1983) using temperatures down to 2 mK, show equally 
clearly that in this system n (T= 0) does go continuously to zero, apparently as (n  - n,)’ 
with S N ~ ;  these experiments are reviewed by Edwards and Sienko (1983) in this 
journal. In a-Si-Nb, with decreasing concentration of Nb, 0 (T=O) goes to zero at 
11.5% Nb as (n  - nC)’ with s= 1 (Hertel et al. 1983) and there are now many examples of 
this behaviour. Here n, is the critical concentration. 

E 

0.3 
a 

0.1 

0.1 0.2 0.3 
I / T ( K ” )  - 

Figure 5. Resistivity of InP as a function of 1/T, for various magnetic fields (in Tesla) 
(Biskupski 1982). 
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8 N. F. Moti 

t 
- 
c 

I 

5 
G 
Y 

c .- 
E 

b 

0 1  I 1 I I I I I I I I  I I I I l l l l l  1 I I I I l l l l  I I I l l  
1013 10'4 10'5 10l6 

N~ - N~ [ ~ r n - ~ l  

Figure 6. omin deduced from the results of figure 5 (Biskupski 1982) and similar work. 

4. Theory of the conductivity at the Anderson transition 
We have to explain, then, that o (T=O) will in general go continuously to zero if 

composition or stress are changed, that omin is often a good approximation to the pre- 
exponential in (l), and that omin can exist when the transition is induced by a magnetic 
field. 

The scaling theory uses the concept introduced by Thouless (1977) of the 
conductivity o(L) of a cube of side L As E ,  is changed, no discontinuity would be 
expected in o for finite L, and it was argued that o(m) cannot change discontinuously 
either. We believe that this is correct only in the absence of a magnetic field-as has 
been argued by others. This can be seen by examining the Kubo-Greenwood 
expression (6). 

If the functions Y are localized, the conductivity (6) must vanish because the states 
are in general non-degenerate and if Yl, Y 2  overlap, characteristic functions 

u Y ~  + bY2 

bY 1 - uY, 

will form, and these cannot have the same energy. But if Y, and Y2 are extended and 
degenerate, it is difficult to see how the average of a squared term can vanish. Kaveh 
and Mott in a series of papers (Kaveh and Mott 1983, Mott and Kaveh 1983) proposed 
that the functions should be of the form 

AY'";' + B(u/r)2YY" (14) 

that is made up of power-law localized and extended states; normalization gives 
IAl2 + (BI2 = 1 and at the transition A+O. The status of this theory is perhaps uncertain, 
but the present author believes that it is not relevant to the behaviour near n,. Starting 
from the random phase wave function (3), it is possible to show, by considering the 
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The minimum mctallic coriductivity 9 

correlation between the phases 4, in Yl, Y,, that a+O. The argument (Mott 1984 a, b) 
is as follows: 

As we have seen, for an energy A E  just below the mobility edge, the wave functions 
in the absence of a magnetic field are real, and cannot overlap much. If two wave 
functions are centred at a distance R the transfer integral will be of the form 

Ho exp (- R/5) 
and this must be less than A E ,  so two states cannot be closer than a distance given by 

R = 5 In ( H o / A E )  

Putting 

this gives 

The essential point now is that just above the mobility edge, the functions within a 

(a) The functions Yl, Y, remain real and all are identical with (7). 
(b) They have long-range fluctuation of wavelength R given by (15), tending to 

infinity as E+E,. The ‘participation ratio’ 

volume R3 will be little changed. Thus, within this volume: 

{+4 d3r}- 

tends to zero as E+E,. Since all the maxima are at the same positions in space, 
and CJ according to (b) depends on the fourth power of Y ,  this property will 
multiply CJ by 

{exp (R/OY (16) 
However, from (a) above we see that 

apart from some constant factor exp ($). x and x + R are supposed to be the values at 
the minima of Y in figure 7. Here the phases are random, so that both for the y, z 

+ + envelope 

Figure 7 .  Sketch of extended wave function near the Anderson transition. For an energy in the 
range AE, all functions VL have peaks at same point, and differ only in the complex region. 
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10 N .  F .  M o t t  

integration and for the addition of the next term [ Y z ] ~ ~ ~ R  we can use the random 
phase approximation. So our conclusion that YT = Y,  reduces the integral by J(u/c), 
the region of space between *< and $R from the maximum contributing a negligible 
amount. Since IYI2 must be taken at a distance f R  from the maxima, a term is 
introduced which just cancels (16). Thus for energies AE above E ,  

c = 0.03(e2/ha)(a/~) 

=0.03e2/ht (1 7) 
where 5 is the localization length for electrons with energy A E below E,. If varies with 
( E - E J - '  with s=  1 ,  a linear drop of o with concentration can be explained. 

In the presence of a magnetic field H ,  the localized wave functions are no longer real; 
there should be a phase change exp (ina/L,) on going from well to well, where 

L, = (ch/He)1'2 (18) 
The argument, therefore, is not applicable in a magnetic field. 

We now ask what happens at finite temperature. The scaling theory introduces the 
conccpt of the conductivity o(L)  for a cube of size L, and argues that this cannot show a 
discontinuity. Following Abrahams et al. (1979) we introduce the inelastic diffusion 
length L ,  which is the distance that an electron diffuses before an inelastic collision, so 
that 

Li = J(DZi) (19) 
where zi is the time before an inelastic collision. A finite value of zi introduces an 
uncertainty h/zi into the energy, so we cannot say exactly whether there is a 
discontinuity or not. We now assert that for practical purposes, the conductivity when 
E lies at E, is 

and as E drops below E,  there is a rapid drop in CT, though there will be no discontinuity. 
In a theory of non-interacting electrons (20) should give both the conductivity when E ,  
lies at E ,  (or just above) and the preexponential factor in (2). 

CJ = 0.03e2/h~,  (20) 

In the case of a magnetic field, we write 

c = 0.03e2/hL, (21) 
there is no uncertainty in the energy and, we believe, a discontinuity in CT does occur at  
E,. In terms of scaling theory, in a magnetic field there is no one-parameter scaling 
function. If L,  d a, then we expect 

(T,," = 0.032/&a 

the author's original expression. This accounts for the results of a Biskupski and of 
Long and Pepper on the conductivity of InP. This is in fact almost obvious; we have 
already seen that with the Anderson model there is a phase change of m/L ,  in going 
from centre to centre, and for a random array with a mean distance a between each 
centre the assumption that the localized wave functions are real is completely invalid. 

We now discuss the quantity Li, the inelastic diffusion length. This can be a 
consequence either of electron-electron collisions or collisions with phonons. In low 
temperature work on doped semiconductors the former will be responsible. For a 
metallic sample, we suppose that the time z before an electron-electron collision is 
given by (Ziman 1961). 
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The minimum metallic conductivity 11 

where zo - l/uF The inelastic diffusion length is given by (19), namely 

Li = J ( D z )  (22) 
where D is the diffusion coefficient. Far from the mobility edge one might write 
D = i 1 2 / ~ o ,  but if o is reduced by the factor a/Li, so must be D. We write then, 
with 1 = a  

Li = U(E,/~T)(U/GLJ’~~ 

or 

( L ~ / u ) ~  = & ( E , / ~ T ) ~  

This formula shows that L, approaches a as the temperature rises, which perhaps could 
explain why the experiments prior to 1980 at  temperatures above 1 K gave the lowest 
unactivated conductivity as om,,-though we should expect the value to drop as T2I3 at 
low T. 

In a similar way we can consider the pre-exponential factor oo in (2) when E, lies 
below E,.  The lifetime of an electron at the mobility edge will be of the form 

where N ( E )  is the density of states per atom and H the matrix element of the screened 
electron-electron interaction. From a similar calculation (Mott 1984 a, b) we find 

L! =&a3z/ to ,  

where z,, is the elastic time of relaxation. We argue that as E,-E,  increases, Li will 
approach the value a. We do not, however, consider that the success of the assumption 
that omin is the pre-exponential factor is fully understood. 

5. The pre-exponential factor in the conductivity of non-crystalline semiconductors 
Our account of the theory up till now has been for non-interacting electrons. In 

discussions of the pre-exponential factor this should be sufficient. We have to consider 
the behaviour of a single electron (or hole) at a mobility edge; its interaction with 
electrons at the Fermi level can determine its lifetime, as we have seen in the last section, 
but apart from such Auger collisions electron-electron interaction is not important. In 
this section, then, we neglect this interaction and consider the pre-exponential factor in 
amorphous and liquid semiconductors. 

We consider first the important case of hydrogenated amorphous silicon. Here the 
density of states at EF is small, except perhaps for heavily doped specimens, so Li will 
certainly be determined by interaction with phonons. The present author (1984 b) from 
experimental and theoretical considerations estimates it as 

Li-30W 

weakly dependent on T. no should thus be about 16 0- cm- ’. For the conductivity at 
a mobility edge the pre-exponential factor is greatly affected by the variation with 
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12 N .  F .  Mort 

temperature of E ,  - E ,  (Overhof and Beyer 1983), and the main interest of this result is 
for the calculation of the drift mobility pD in photo cells. For this we expect 

pD=PO exp ( - A E / k T )  
where A E  is an activation energy and 

P O  = ~ c ~ ( ~ c ) / ~ ( ~ A )  

here E ,  is the lowest energy in the conduction band and p ,  the mobility at  E,, related to 
Go by 

o0 = e N ( E , ) k T p ,  (24) 
Thus 

oo = e N ( E A )  k T p o  

Data both from Spear (1983) and Tiedje and Rose (1981) give po-100cm2/Vs 
(and A E = 0 - 1 3  eV); the value of N ( E , )  is more doubtful, but we take a value given by 
Spear (0.5 x 1020cm-3eV-'), which leads for oo to -SOW'cm-'. 

Many of these models are controversial. In particular, Cohen et al. (1983) have 
proposed that in the conduction band a polaron is formed, self-trapping occurring on 
every Si-Si bond. They also argue that self-trapping of this kind must occur if pc+O as 
E-tE,. Arguments against this conclusion are given by Mott (1984 b). 

The concept of omin has often been applied to liquids that undergo a metal- 
insulator transition, it being argued that if cr falls below - 200 R -  ' cm- ', conduction is 
not metallic. Whether this is so or not will depend on our estimate of Li, which will be 
determined by collisions with phonons and electron-electron collisions. As regards the 
former, although all collisions with electrons are inelastic, the momentum change is so 
small that it takes - 100 collisions to produce the incoherence between waves that 
determines Li. 

In liquid semiconductors E ,  may vary rapidly with T, with a large effect on the 
pre-exponential factor. However, values of oo can be obtained from the thermopower S, 
writing 

cr = cro exp { - ( E c -  E , ) / k T }  

S = ( k / e ) { ( E , - E , ) / k T +  1) 

so that, eliminating E, -EE, ,  we have 

In o = In oo + (k/e)S - 1 (25) 
A linear plot of cr against S with slope k /e ,  as the temperature is varied, is widely 
observed, and a value of oo can be obtained. Thus, from observations of Schmutzler 
and Hensel (1972) for expanded fluid mercury the value is -20W1cm- '  but for 
caesium about 3OOi .T '  cm-l. Also at the transition Mott and Davis (1979) predict that 

IS/ = (k/e)2 In 2 (26) 
and using this result they find for caesium c r o - 3 0 0 W ' c m ~ ' .  

We are led to conclude that cmin is a fair approximation to the conductivity of fluids 
near the metal-insulator transition. In a paper to be published in Phil. Mag., Mott has 
examined the problem and finds that Li-a is likely to be a good approximation for 
high resistivity liquids. 
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The minimum metallic conductivity 13 

6. Quantum corrections far from the transition 
For the conductivity of a metal the first effect of correlations between wave 

functions is given by the expression 

where Lis the size of the specimen, or Li or L,, whichever is the smaller. This is valid for 
any mean free path 1, even if k,l is large. It was obtained by diagrammatic methods by 
Gorkov et al. (1979), Kawabata (1981) and Shapiro and Abrahams (1981), and a 
physically appealing method (with 4.5 instead of 3) by Bergmann (1983). It applies to 
electrons in a single-valley conduction band or an impurity band. The term l/Li will 
always lead to a correction to the conductivity of the form + A T ,  if Li results from 
electron4ectron collisions. 

It is of interest to extrapolate (27) to the metal-insulator transition. At the Ioffee 
Regal limit for a half-full impurity band, k,l=k,ail.n: so (T cannot vanish. This i s  
expected, because for Anderson localization the density of states must decrease, by 
about g=*. If g is not unity, (27) should be replaced by (with ( ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ = i e ~ / h a )  

with c of order unity (Kaveh, Phil. Mag., to be published). For L =  00, this does in fact 
vanish for g -f the familiar Anderson criterion, which gives us some confidence in the 
formula. Also for finite L we find at E = E ,  

(T = e2g2/3hL (29) 
which is the same formula that we obtained by other methods. Since for I-= co (T goes 
linearly to zero, we suppose s = 1. 

In the work of Thomas (1983) and co-workers on Si: P, in which the conductivity 
goes continuously to zero as the concentration n decreases to n,, the measured specific 
heat (Sasaka 1980) conforms approximately to the value expected for a degenerate gas 
of electrons in the conduction band. One has to conclude that the transition takes place 
in the conduction band. This-we believe-could not occur in a single-valley 
semiconductor. Berggren (1982) first pointed out that for (spherical) valleys, k;  would 
be reduced by 1 / x ~ ’ ~ ,  so for six valleys (x =6) (T can drop to zero in the conduction band. 
We believe that this behaviour may be unique to silicon. 

The linear increase in the conductivity described above has been observed in 
amorphous metals, as has the term in T’’’ described in the next section, and may 
account for the Mooij rule discussed in $2. 

7. Long-range Coulomb interactions 
In this section we discuss the effects of long-range Coulomb interactions between 

electrons; our discussion is relevant to the impurity band of a compensated 
semiconductor, to a degenerate electron gas in a conduction band and in fact to any 
metal except a narrow half-filled band, where the Hubbard U is all-important. This is 
considered in our final section. 

As one might expect, the Coulomb repulsion decreases the density of states at the 
Fermi level, and the effect is the greater the shorter the mean free path. Altshuler and 
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14 N .  F .  Mot t  

Aronov (1979) were the first to show that a cusp is to be expected in the plot of N ( E )  
against as in figure 8, the depth of the cusp being given by 

GN(E) /N(E)  = 0*025(mD/h) (30) 
where D is the diffusion coefficient. Since D+O as E - E ,  this expression diverges, and is 
only valid when E - E ,  is not too small. It leads: 

(1) To a factor (1 -6N/N)2 ,  reducing the conductivity near the transition. 
(2) A temperature-dependent term in the conductivity 

o=o,(l +AT”2) (31) 

A is normally positive near the transition but can have either sign. Clearly at low 
temperatures it will predominate over terms varying as T or T2,  giving a larger 
correction than the linear term resulting from equation (27) and still more the Landau- 
Baber term C T 2  resulting from electron-electron collisions. 

Figure 8. Cusp in the density of states of a ‘dirty’ metal resulting from long-range Coulomb 
interaction, (a)  is without long-range Coulomb interaction, (b) taking this into account. 
The correction giving the cusp can have either sign. 

The magnitude of the term varies from one material to another in a way that has not 
been satisfactorily explained. There is an interesting contrast between InP and InSb. As 
we have seen, a metal-insulator transition is observed in these materials under the 
influence of a strong magnetic field. In InP the term AT’’2 is very small, and as we have 
seen a value of omi,-0~03e2/ka is observed. In InSb, for reasons not at present 
understood, the term is much bigger, and according to measurements by Mansfield 
et (11. (1984), omin, if i t  exists, is much smaller. This is shown in figure 9. 

In Si: P Thomas and co-workers (see Thomas 1983), inducing the transition by 
uniaxial stress, have shown that at very low temperatures 

oI%(n-nc)”2 

instead of the linear behaviour observed in a-Si-Nb and other similar systems. At the 
same time they find that the dielectric constant IC increases rapidly as 

1 / K - ( n , - f l ) ” ,  VN 1 
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2.1 , I 

0 2  O L  0 6  0 8  1 0  1 2  1 6  

T O 5  [ K O 5 )  

Figure 9. Longitudinal conductivity in mho cm ~ ’ ofjust metallic InSb, plotted against TI’’ at 
a magnetic field of 6 T. The MI  transition occurs at 6.6 T. The solid line is a least squares fit 
to o(T)=o(O)+AT”’ (Mansfield et d. 1984). 

Since for a Fermi glass we expect (see below) 

and, as we have shown, a.cl/<, we have to deduce that 

5 cc(E, - E)s and ( E  - Ec)s 

with s = 4 for these systems. This is believed to be another result of long-range Coulomb 
interaction. An account of how this can happen is given by Grest and Lee (1983). 

The expression t i cc t2  comes from the dimensional equation, which states that the 
polarizibility is proportional to e2N(E,) t2. This neglects any effect of the Clausius- 
Mossotti equation 

4nNu 
t i = l +  

1 - 4 z N ~ / 3  ( 3 3 )  

on the dielectric constant near the transition; here a is the polarizibility. This term and 
its influence on metallic properties is discussed by Edwards and Sienko (1983). It should 
in our view be important only when the orbitals of atoms (or localized states) do not 
greatly overlap. As pointed out by Mott and Gurney (1940, p. 17) it is not successful in 
describing the dielectric constants of the alkali halides and this was ascribed to overlap. 
We think that in the non-crystalline systems discussed here, the denominator in (33) 
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16 N .  F .  Mott 

will never vanish, for the following reason. The hydrogen radius h2K/me2 will increase 
according to equation (12) as ti increases, but overlap must occur before K becomes 
infinite, so that (33) breaks down. 

The dielectric catastrophe just before the metal-insulator transition occurs in some 
fluid systems, for instance solutions of sodium in ammonia and liquid K-KCl (Edwards 
and Sienko 1981); it is suggested that the cause is similar. 

8. The Mott transition 
For an array of one-electron centres, where a transition occurs through the overlap 

of the two Hubbard bands, a discontinuous (first order) transition is predicted. This 
could disappear through the effect of disorder (Mott 1978), but clearly does not in 
systems such as metal-ammonia or expanded fluid caesium, if as postulated by the 
author the critical point is a consequence of the transition. 

At temperatures above the critical point, two Hubbard bands will gradually 
overlap as the concentration increases until E ,  and E ,  coincide. Since a conductivity 
omin - 100-200 K1 cm has been quoted in favour of the transition being the cause of 
the critical point, we have to ask whether this is nowjustified. It should only be justified 
if Li - a. Fortunately for caesium we have direct evidence that o - omin, from the method 
outlined in 9 5; a small Li could be a consequence of the strong interaction with spins. 
We think that, within a factor 2 or 3, o=omin is likely. 

In doped uncompensated semiconductors where the transition takes place in an 
impurity band (thus excluding Si : P), we think the disorder must be great enough to 
wipe out any discontinuity in B.  Two Hubbard bands begin to overlap at a 
concentration given by the Mott criterion (12), but the transition is now of Anderson 
type. If the transition is not produced by a magnetic field, we expect CT (T= 0) to increase 
as n - n, or (n - nC)”’. 

9. Two-dimensional systems 
The inversion layer at the interface between crystalline silicon and silicon dioxide 

has been extensively investigated; the density of electrons and thus at low temperatures 
the Fermi energy can be changed in an MOS device by changing the gate voltage, and 
an ‘Anderson transition’ observed through variation of the source-drain current with 
temperature. Early work (reviewed by Mott et al. 1975, Pepper 1977) showed an 
Anderson transition between activated conduction and a value of the conductance 
almost temperature-independent and equal under suitable conditions to the theoretical 
minimum metal conductance, for which theory gives 0.1e2/h. The constant depends on 
the condition for Anderson localization in two dimensions. However Abrahams et al. 
(1979) were the first to point out that in two dimensions there can be no true metal and 
all states are weakly localized. This leads to a correction to the ‘metallic’ conductivity of 
the form 

G= go + A 1nT 

which is widely observed. The behaviour at very low temperatures is controversial. 
According to the scaling theory all states are exponentially localized, with a 
localization length 

5 = 1 exp ($zk, l )  

and the transition from strongly to weakly activated conduction, though rapid, is not 
sharp. Kaveh and Mott (1981) on the other hand suggest that there is a sharp mobility 
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T h e  minimum metullic conductivity 17 

edge at which t+ 00, and that for energies above this the functions tend to zero as l /r.  
This does of course conflict with the scaling theory, but there is experimental evidence 
that for two-dimensions the theory is incorrect (Davies et a/. 1983). 
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